Runtime Provenance Refinement for Notebooks

Nachiket Deo Boris Glavic Oliver Kennedy
University of Connecticut Illinois Institute of Technology University at Buffalo
nachiket.deo@uconn.edu bglavic@iit.edu okennedy@buffalo.edu
ABSTRACT -,E s
Computational notebooks (e.g., Jupyter or Apache Zeppelin) have 3
become a popular choice for data exploration, preparation, and 2 20+
ETL. Notebooks are more suited for interactive development of data _E; 154 o
pipelines than classical workflow systems, because they provide S S
immediate feedback for the results of a computation and do not & 10 ~¢9 a o
require the full computation to be specified upfront. However, the 3 Ao
notebook model suffers from poor reproducibility, does not support g 37 ) ';g:" 7
automatic incremental re-evaluation of code when the code or g o4 | | | | | | | | | ‘
inputs change, and does not allow for parallel execution of cells — < 0 50 100 150 200 2|52 “300 350 400 450500
Total Cells

all symptoms of its kernel-based evaluation strategy. We propose a
new “workbook” model that combines the usability of notebooks
with the provenance and parallel execution capabilities of workflow
systems. This is made possible through a novel approach that refines
a static approximation of provenance for Python code at runtime
and a scheduler that dynamically adapts the execution order of
cells based on data dependencies detected or refuted at runtime.
We demonstrate the feasibility of this approach using a prototype
implementation in our notebook engine VizIEr.

CCS CONCEPTS

« Software and its engineering — Runtime environments; « In-
formation systems — Data provenance;

1 INTRODUCTION

Workflow systems [3] break complex tasks like ETL, model-fitting,
and more into a series of smaller, parallelizable steps, but require
users to explicitly declare inter-step data dependencies. Computa-
tional notebooks like Jupyter instead model tasks as sequences of
code ‘cells’ that each describe a step of the computation without
explicit inter-cell dependencies. Users manually trigger cell execu-
tion, dispatching the cell’s code to a long-lived Python interpreter
called a kernel. Cells share data through the state of the interpreter,
e.g., a global variable created in one cell can be read by another cell.
Companies like Netflix! are increasingly turning to notebooks for
bulk ETL and ML workloads as they allow a faster, more interactive
development cycle. However, the kernel’s hidden state often creates
bugs that are hard to understand or reproduce [1, 10]. Furthermore,
without explicit dependencies, the notebook execution model also
precludes inter-cell parallelism and incremental evaluation.

!https://netflixtechblog.com/scheduling-notebooks-348e6c14cfd6
Zhttps://www.youtube.com/watch?v=7jiPelFXb6U
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Figure 1: Notebook size versus workflow depth in a collection
of notebooks scraped from github [10].

Dynamically collected provenance [9] can address the hidden
state problem, but is of limited use for scheduling since dependen-
cies are only learned after running a cell: By the time we learn that
two cells can be safely executed concurrently, they are finished.
Static dataflow analysis [7] addresses both needs, but requries ap-
proximating dependencies — conservatively, limiting opportunities
for parallelism; or optimistically, risking errors from missed depen-
dencies. We bridge the static/dynamic gap by proposing a hybrid
approach: Incremental Runtime Provenance Refinement, where stati-
cally approximated provenance is incrementally refined at runtime.

We demonstrate how provenance refinement enables (i) parallel
execution and (ii) partial re-evaluation of notebooks. As we show,
this requires a fundamental shift away from a single monolithic
kernel towards isolated per-cell interpreters, a model we call Iso-
lated Code Execution (ICE). We validate our ideas by extending
an ICE notebook named Vizier [1]. Cells in Vizier run in isolated
interpreters and communicate only through dataflow. We outline
the challenges of extending Vizier to support implicit dependencies
through incrementally refined provenance. This, in turn allows for
parallel and incremental notebook execution, while retaining the
typical programming model of Jupyter, where developers do not
have to explicitly declare what state to share among cells.

As a preliminary assessment of the potential of parallelizing
Jupyter notebooks, we conducted a survey on notebooks scraped
from Github by Pimentel et. al. [10]. We only include notebooks
using Python and which are known to execute successfully (~6000
notebooks). We constructed a dataflow graph for each notebook as
described in Section 5. As a proxy measure for potential speedup,
we considered the depth of this graph. Figure 1 presents the depth
— the maximum number of cells that must be executed serially — in
relation to the total number of Python cells in the notebook. The
average notebook has over 16 cells, but an average dependency
depth of just under 4 and an average parallelism factor of 4.

We outline our central contribution: Incremental Runtime
Provenance Refinement in Section 2, and review Vizier’s ICE
architecture in Section 3. Afterwards, we discuss our remaining
contributions: (i) An Incremental Provenance-based Scheduler.
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import urllib.request as r
with r.urlopen('http://someweb/code.py') as response:
eval( response.read() )

@ N

(a) Dynamic code evaluation in Python may lead to arbitrary depen-
dencies that will only be known at runtime.

1|b=d=x2if a > 10 else e * 2

(b) Static dataflow analysis has to conservatively over-approximate
dataflow because control flow depends on the program’s input.

Figure 2: Example Python code

In Section 4, we present a scheduler for incremental and paral-
lel notebook execution. We discuss the challenges that arise due
to provenance mispredictions and how to compensate for them.
(ii) Jupyter Import: Section 5 discusses how we extract approx-
imate provenance from Python code statically, and how existing
notebooks written for Jupyter can be translated to ICE notebook
architectures like Vizier. (iii) Implementation in Vizier and Ex-
periments: We have implemented a preliminary prototype of the
proposed scheduler in Vizier. Section 6 presents our experiments
on the parallel evaluation of Jupyter notebooks.

2 RUNTIME PROVENANCE REFINEMENT

Conservative static analysis for Python either produces a coarse-
grained over-approximation of the real data dependencies of a
program, or has to allow for missed dependencies. To see why this
is the case, consider the code snippet in Figure 2a, which executes
a piece of Python code retrieved from the web. The dynamically
evaluated code can create data dependencies between everything in
the global scope. A further overhead of conservative static analysis
is the need to recursively descend into libraries for completeness.

Overly conservative static analysis must accept excessive run-
times to fully analyze all dependent libraries and approximations to
manage dynamically executed code, or must instead treat all cells
as interdependent. However, a less conservative approach could
lead to unsafe notebook execution if it misses a dependency. To
overcome this dilemma, we propose an approach that computes
approximate provenance using static analysis (allowing for both
false negative and false positives in terms of data dependencies)
and deals with missing and spurious data dependencies by discov-
ering them and compensating for them at runtime. This approach
is sensible in the context of computational notebooks, and prior
systems like Nodebook, a Jupyter plugin developed at Stitchfix [12],
make similar assumptions.

Static Approximate Provenance. An initial pass over the note-
book’s code obtains a set of read and write dependencies for each
cell using Python’s AST library and standard dataflow equations [7]
to derive an approximate dataflow graph. To minimize performance
overhead, this step only analyzes the user’s code and does not con-
sider other modules (libraries) — intra-module dependencies (e.g.,
stateful libraries) will be missed at this stage, but can still be dis-
covered at runtime. Like any static dataflow analysis, this stage
may also produce false positives due to control-flow decisions that
depend on the input. For example, in Figure 2b whether the cell has
a read dependency on d or e depends on the runtime value of a.

Exact Runtime Provenance. As the notebook executes, prove-
nance refinement relies on the ICE architecture to collect data

artifacts written to or read by each cell. The resulting dynamically
collected read / write sets are used to refine the dataflow graph cre-
ated by static analysis. Our scheduler (Section 4), assessing opportu-
nities for parallelism or work re-use across notebook re-executions,
leverages this refined information as it becomes available.

3 ISOLATED CELL EXECUTION

An isolated cell execution notebook (ICE) isolates cells by executing
each in a fresh kernel. Before discussing how notebooks written
for monolithic kernels, like Jupyter, can be mapped to the ICE
model in Section 5, we first review the key differences between the
monolithic approach and systems like Vizier [1] or Nodebook [12].

Communication Model. As in a monolithic kernel notebook, an
ICE notebook maintains a shared global state that is manipulated by
each individual cell. However, these manipulations are explicit: for
a variable defined in one cell (the writer) to be used in a subsequent
cell (the reader): (i) the writer must explicitly export the variable
into the global state, and (ii) the reader must explicitly import
the variable from the global state. For example, Vizier provides
explicit setter and getter functions (respectively) on a global state
variable, while Nodebook inspects the Python interpreter’s global
scope dictionary in between cell executions. As mentioned in the
introduction, with our scheduler it will no longer be necessary for
the user to explicitly call setters and getters.

State Serialization. When a state variable is exported, it is se-
rialized by the Python interpreter and exported into a versioned
state management system. We refer to the serialized state as an
artifact. Each cell executes in the context of a scope, a mapping
from variable names to artifacts that can be imported by the cell.
By default, Vizier serializes state through Python’s native pickle
library, but can be easily extended with more specialized codecs
like (i) Python code (e.g., function or class definitions) is exported
as raw Python code and imported with eval. (ii) Pandas dataframes
exported in parquet format and hosted through Apache Arrow.

4 SCHEDULER

The semantics of a workbook notebook is the serial execution of the
cells in notebook order. We refer to the set of variables imported or
exported by each cell as the cell’s read and write sets, respectively. A
correct execution is thus defined in terms of view serializability [11]:
A (parallel) schedule is correct iff the artifact versions that are read
by each cell are consistent with the versions the cell would read in
a serial execution. Note that blind writes are not an issue in Vizier,
because writes to an artifact create a new (immutable) version.
Thus, cells that blindly write an artifact do not conflict with each
other. We assume that cell execution is atomic and idempotent: we
are allowed to freely interrupt or restart a cell’s execution.

Naive Scheduling. Let N denote a notebook, a sequence of cells
[e1,...,cn]. Assume, initially, that for each cell ¢; € N we are
given exact read and write sets (R(c;) and W(c;) respectively).
A notebook’s data dependency graph G = (N, D) connects cells
through edges (r, w, ) € D labelled with symbols as follows:

D={(cr,cwt) | crrcw € N, € R(cr), £ € W(cw),w <,
Bew ENst.w<w <r, e Wicw)}



An edge labelled ¢ exists from any cell ¢, that reads symbol ¢ to the
most recent preceding cell that writes symbol ¢.

Denote by S(c) € {PENDING, DONE} the state of a cell (i.e., DONE
after it has completed execution); a cell ¢ can be scheduled for
execution when all cells connected to incoming edges are DONE:
V(c,cw, ) € D : S(cy) = DONE. When a cell ¢, imports variable ¢
from the global scope, where (cy, ¢y, £) € D, it receives the version
exported by cell ¢,,. Any execution order that complies with this
rule produces schedules that are view-equivalent to the notebook
order and, thus, will produce the same result as a serial execution.

Runtime Refinement. Recall that our static analysis approach
produces a dependency graph G = (N, D) which may have spurious
edges and may miss edges. We refine G at runtime. There are four
possible types of changes to the dependency graph when a cell ¢
is executed. In the following we discuss these cases and how to
compensate for them to ensure scheduler correctness.

(i) When a read does not materialize during c¢’s execution, we
remove the corresponding edge from the dependency graph. Such
spurious reads of a variable / may cause a delay in c’s execution,
because ¢ has to wait for the cell writing I to finish execution.
However, the correctness of the schedule is not affected. (ii) A
write of [ that does not materialize causes inbound edges with the
corresponding label to be redirected to the preceding cell to write I.
Cells dependent on ¢’s version of [ could not have started yet, so the
schedule is still valid. (iii) A missed read that materializes during
¢’s execution adds a new edge to the dependency graph. If the edge
leads to a cell ¢’ in the PENDING state, the read operation may block
until the writing cell has completed. This state is less desirable,
as we may have already allocated resources for the blocked cell
¢ which may lead to resource starvation. (iv) A missed write of
variable [ redirects a subset of edges with the corresponding label I
to the cell c. This is only a correctness error if one of the dependent
cells has already been started — if so, the cell must be aborted and
rescheduled after the current cell ¢ completes.

PROPOSITION 4.1 (TERMINATION AND CORRECTNESS). For any
notebook N and approximated dependency graph (~3for N, the execu-
tion of N using the naive approach with refinement and compensation
is guaranteed to terminate and produces a correct schedule.

Incremental Re-execution. Vizier automatically refreshes depen-
dent cells when a cell ¢ is modified by the user using incremental
re-execution which avoids re-execution of cells whose output will
be the same in the modified notebook. For that, the modified cell ¢
is put into PENDING state. Furthermore, all cells that depend on ¢
directly or indirectly are also put into PENDING state. That is, we
memorize a cell’s actual dependencies from the previous execution
and initially assume that the dependency graph will be the same
as in the previous execution. The exception is the modified cell for
which we statically approximate provenance from scratch. During
the execution of the modified cell or one of its dependencies we may
observe changes to the read and write set of a cell. We compensate
for that using the repair actions described above.

5 JUPYTER IMPORT

We now outline the conversion of (monolithic-kernel) Jupyter
notebooks into ICE-compatible form. For this preliminary work, we

def foo():
def bar(): print(a)
a=2
return bar

def foo(): print(a) :
3
4
5 | bar = foo()
6
7
8

1
2la =1

3| foo() # Prints "1’
4 | def bar():

5 a=2

6 foo()

7| bar() # Prints "1’

bar() # Prints '2'
a=1
bar() # Prints '2'

Figure 3: Scope capture in Python happens at function defi-
nition, but captured scopes remain mutable.

make a simplifying assumption that all inter-cell communication
occurs through the kernel’s global scope (e.g., as opposed to files).

Python’s ast module provides a structured representation of the
code: an abstract syntax tree (AST). Variable accesses are marked by
instances of the Attribute object annotated with the type of ref-
erence: Load, Store, or Delete. We traverse the AST’s statements
in-order to build a fine-grained dataflow graph, where each node is
a cell/statement pair, and each directed edge goes from an attribute
Load to the corresponding Store(s).

Python’s scoping logic presents additional complications; first,
function and class declarations may reference attributes (e.g., im-
ports) from an enclosing scope, creating transitive dependencies.
When traversing a function or class declaration, we record such
dependencies and include them when the symbol is Loaded. Tran-
sitive dependency tracking is complicated due to Python’s use of
mutable closures (e.g., see Figure 3); In the latter code block, when
bar is declared, it ‘captures’ the scope of foo, in which a = 2,
and overrides an assignment in the global scope, even though the
enclosing scope is not otherwise accessible.

Afterwards, the fine-grained dataflow graph, produced as ex-
plained above, is reduced into a coarse-grained dataflow graph by
(i) merging nodes for the statements in a cell, (ii) removing self-
edges, and (iii) removing parallel edges with identical labels. The
coarse-grained data flow graph provides an approximation of the
cell’s dependencies: The set of in-edges (resp., out-edges) is typi-
cally an upper bound on the cells real dependencies. While missed
dependencies are theoretically possible, they are rare in the type of
code used in typical Jupyter notebooks. Nonetheless, if they arise
they will be taken care of by our scheduler. As a final step, we inject
explicit variable imports and exports (using Vizier’s artifact API)
for the read and write sets of each cell into the cell’s code.

6 IMPLEMENTATION

As a proof of concept, we implemented the static analysis approach
from Section 5 as a provenance-aware parallel scheduler (Section 4)
within the Vizier notebook system [1]. Parallelizing cell execution
requires an ICE architecture, which comes at the cost of increased
communication overhead relative to monolithic kernel notebooks.

Implementation. The parallel scheduler was integrated into Vizier
1.2 (https://github.com/VizierDB/vizier-scala). We additionally added
a pooling feature to mitigate Python’s high startup cost (approxi-
mately 600ms); The modified Vizier launches a small pool of con-
tinuously running Python instances. In future work, we plan to
allow kernels to cache artifacts, and prioritize the use of kernels
that have already loaded artifacts we expect the cell to read. This
prototype does not yet implement repairs for missed dependencies.


https://github.com/VizierDB/vizier-scala
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Figure 4: Workload traces for a synthetic reader/writer workload

Experiments. All experiments were run on Ubuntu 20.04 on a
server with 2 x AMD Opteron 4238 CPUs (3.3Ghz), 128GB of RAM,
and 4 x 1TB 7.2k RPM HDDs in hardware Raid 5. Vizier’s internal
dataframe representation relies on Apache Arrow and Spark. To
mitigate Spark’s high start-up costs, we prefix all notebooks under
test with a single reader and writer cell to force initialization of e.g.,
Spark’s HDFS module. These are not included in timing results.

Overview. As a preliminary experiment, we ran a synthetic work-
load consisting of one cell that randomly generates a 100k-row, 2
integer column Pandas dataframe and exports it, and 10 reader cells
that read the dataset and perform a compute intensive task: Com-
puting pairwise distance for a 10k-row subset of the source dataset.
Figure 4 shows execution traces for the workload in Vizier with its
default (serial) scheduler and Vizier with its new (parallel) sched-
uler. The experiment shows that the parallel execution is ~ 4 times
faster than the serial execution. However, each individual reader
takes longer to finish in the parallel execution. This is possibly the
result of contention on the dataset. Nonetheless, this preliminary
result and the analysis shown in Figure 1 demonstrate the potential
for parallel execution of notebooks.

Scaling. Figure 4c shows the overhead of loading data into a new
kernel by creating a python cell that iterates over all records in the
pandas dataframe. The ’cold cache’ cost also includes the one-time
cost of loading a Parquet dataset and export it via Arrow.

7 RELATED WORK

Workflow provenance has been studied extensively (e.g., see [3] for
a survey), but reliance on explicit dependencies limits its utility in
our setting. More closely related are provenance and static analysis
techniques from the programming languages community [7].
Pimentel et al. [8] provide an overview of research on prove-
nance for scripting (programming) languages and did identify the
need for and challenges of fine-grained provenance in this context.
noWorkflow [9] collects several types of provenance for Python
scripts including environmental information, as well as static and
dynamic data- and control-flow, but in contrast to our work only
produces provenance for analysis and debugging and not sched-
uling. [5] combines static and dynamic dataflow analysis to track
dataflow dependencies during cell execution and warn users of
“unsafe” interactions where a cell is reading an outdated version
of a variable. By contrast, our approach automatically refreshes
dependent cells. Vamsa [6] also employes static dataflow analysis
to analyze provenance of Python ML pipelines. Dataflow note-
books [4] extend Jupyter with immutable identifiers for cells and
the capability to reference the results of a cell by its identifier. This
approach can avoid implicit dependencies, but requires users to be
diligent in using these features. Additionally, our approach allows

parallel execution of independent cells, something that was only al-
luded to as a possibility in [4]. Nodebook [12] is a plugin for Jupyter
that checkpoints notebook state in between cells to force in-order
cell evaluation; Although closely related to our approach, it does
not attempt parallelism, nor automatic re-execution of cells. [2]
captures fine-grained provenance at runtime for common classes of
relational data transformations in Python preprocessing pipelines.
In contrast our approach utilizes static analysis.

8 CONCLUSIONS

We introduced an approach for incrementally refining provenance
for computational notebooks and implemented a scheduler for ICE-
architecture notebooks based on this approach. Our method enables
(i) parallel cell execution; (ii) automatic refresh of dependent cells
after modifications; and (iii) import of Jupyter notebooks. While our
proof-of-concept shows promise, further work is needed to reduce
state transfer between kernels. For example, kernels can be re-used
or forked to minimize state transfer. Alternatively, responsibility
for hosting state can be moved from the coordinator, directly to the
kernel that created the state. We also plan to explore how to reduce
the initial dataframe access cost.
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