W1: RAM vs EM Algorithms

- Due: Sunday Feb 18
- Summary: 3 questions and one challenge question, for a total of 12 points.
- Submission: https://autolab.cse.buffalo.edu/courses/cse410-s24/assessments/W1-Binary

Submission

Only PDF-formatted files will be accepted by autolab.

- You may write out your answers by hand and scan them; Numerous apps exist for phones to 'scan' in written documents as a PDF.
- You may typeset your answers in LaTeX, Typst, or a similar tool.

Note that the instructor must be able to read your answer. Submissions that are unintelligible will receive no points.

Binary Search

Recall the basic binary search algorithm.

```
fun binary_search(target: u32, data: Vec<u32>) -> usize
    { return binary_search(target, data, 0, data.len()); }
fun binary_search(target: u32, data: Vec<u32>, start: usize, end: usize) -> usize
{
    if(start >= end-1) { return start }
    let mid = (start - end) / 2 + start;
    if( data[mid] == target ) { return mid; }
    else if( data[mid] < target ){ return binary_search(target, data, mid, end); }
    else { return binary_search(target, data, start, mid); }
}
```

Question 1: Binary Search in RAM [4pt]
Let $T(N)$ be the runtime of the binary search algorithm given above where $N=$ data.len():

1. Set up the recurrence relation for $T(N)$ (i.e., define $T(N)$ by cases, in terms of itself).
2. Set up the base and recursive cases for a proof by induction that $T(N)=O\left(\log _{2}(N)\right)$
3. Complete the proof by recursion that $T(N)=O\left(\log _{2}(N)\right)$

Answer

$$
T(N)=\left\{\begin{array}{l}
O(1) \text { if } N=1 \text { or record found } \\
O(1)+T\left(\frac{N}{2}\right) \text { otherwise }
\end{array}\right.
$$

Inductive Hypothesis: $T(N)=O\left(\log _{2}(N)\right)$
Base Case: $T(2)=O\left(\log _{2}(2)\right)$
(we start with $\mathrm{N}=2$ because $\log _{2}(1)=0$)
Recursive Case: , then $T(N)=O\left(\log _{2}\left(\frac{N}{2}\right)\right)$

- Precondition: $T\left(\frac{N}{2}\right)=O\left(\log _{2}\left(\frac{N}{2}\right)\right)$
- Proof Goal: $T(N)=O\left(\log _{2}(N)\right)$
-

Is it the case that... $T(2)=O\left(\log _{2}(2)\right) \exists c>0: T(2) \leq c \cdot \log _{2}(2)$
$\exists c>0: T(2) \leq c \cdot 1$
$\exists c>0: 1+T(1) \leq c \cdot 1$
$\exists c>0: 1+1 \leq c \cdot 1$
$\exists c>0: 2 \leq c$
This statement is true for any $c \geq 2$, so the initial statement must be true.
-
Is it the case that... $T(N)=O\left(\log _{2}(N)\right)$
$\exists c>0: T(N)=c \cdot \log _{2}(N)$
$\exists c>0: 1+T\left(\frac{N}{2}\right)=c \cdot \log _{2}(N)$
Given the precondition, we can replace $T\left(\frac{N}{2}\right)=c \cdot \log _{2}\left(\frac{N}{2}\right)$
$\exists c>0: 1+c \cdot \log _{2}\left(\frac{N}{2}\right)=c \cdot \log _{2}(N)$
$\exists c>0: 1+c \cdot \log _{2}(N)-\log _{2}(2)=c \cdot \log _{2}(N)$
$\exists c>0: 1+c \cdot \log _{2}(N)-1=c \cdot \log _{2}(N)$
$\exists c>0: c \cdot \log _{2}(N)=c \cdot \log _{2}(N)$
This statement is true for any value of c, so the initial statement must be true.

The proof holds for any $c \geq 2$ and $N \geq 2$

Question 2: Binary Search in EM [4pt]

Assume that:

- data is initially stored in external memory (i.e., on disk), as it is in P1.
- Each disk page stores P u32 values.

Let $I(N)$ be the number of page reads (i.e., the IO Complexity) of the binary search algorithm given above, where N is defined as above.

1. Set up the recurrence relation for $I(N)$.
2. Set up the base and recursive cases for a proof by induction that $I(N)=O\left(\log _{2}(N)\right)$
3. Complete the proof by recursion that $I(N)=O\left(\log _{2}(N)\right)$

Answer

In the worst case, data [. .] represents one disk read. The recurrence relation is:
$I(N)=\left\{\begin{array}{l}O(1) \text { if } N=1 \text { or record found } \\ O(1)+I\left(\frac{N}{2}\right) \text { otherwise }\end{array}\right.$
Note that this is exactly the same recurrence relation as part 1 . The rest of the setup is identical. Since the goal is to prove an upper bound, proving it for the worst case is sufficient to prove it for a better case (e.g., with caching).
If we cache pages (of size P), the last $O\left(\log _{2}(P)\right)=O(1)$ reads will go to the same page, changing the recurrence relation changes only slightly:
$I(N)=\left\{\begin{array}{l}O(1) \text { if } N<\log _{2}(P) \text { or record found } \\ O(1)+I\left(\frac{N}{2}\right) \text { otherwise }\end{array}\right.$ This is a legitimate approach; the proof differs only in the use of $\log _{2}(P)$ as a base case.

ISAM Index

Remember the ISAM index structure we discussed in class? For $N=$ data. len() records, and P u32 values per page, the index is a tree built as follows:

- The 1st level contains P u32 values on 1 page, taken at uniform intervals from data
- The 2nd level contains P^{2} u32 values on P pages taken at uniform intervals from data
- ...
- The ith level contains P^{i} u32 values on P^{i-1} pages, taken at uniform intervals from data
- ...
- The last level contains all of data.

To find a value (let's call this isam_find):

1. We do a binary search on the 1 st level page. Say the value is between the i and $i+1$ th elements on the 1 st level page (or simply greater than the i th element if $i=P-1$).
2. We do a binary search on the i th page of the 2 nd level. Say the value is between the j and $j+1$ th elements on the i th 2 nd level page (or greater than the j th element if $j=P-1$)
3. Repeat the process, descending levels until we identify the specific page of data.

If you prefer code, this algorithm is summarized as follows:

```
fun isam_find(target: u32, data: ISAM) -> Option<usize>
    { isam_find(target, data, 0, 0); }
fun isam_find(target: u32, data: ISAM, level: u32, page: usize) -> Option<usize>
{
    let current_page: Vec<u32> = data.get_page(level, page);
    let position = binary_search(target, current_page);
    if(level >= data.depth())
    {
        return page * data.page_size() + position;
    }
    else
    {
        return isam_find(target, data, level+1, page * data.page_size() + position)
```

```
    }
}
```


Question 3: ISAM Index in EM [4pt]

Assume that you have an ISAM index structure, as defined above, stored on disk. Let $I_{\text {ISAM }}(N, P)$ be the number of page reads (i.e., the IO Complexity) of the isam_find algorithm defined above.

1. Draw the recurrence diagram ${ }^{1}$
2. Use the recurrence diagram to make a guess about the asymptotic bound on $I_{\text {ISAM }}(N, P)$.
3. Set up the recurrence relation for $I_{\text {ISAM }}(N, P)$ given the bound you guessed above.
4. Complete the proof by recursion for the bound you guessed on $I_{\text {ISAM }}(N, P)$.

Inductive Hypothesis: $I_{\operatorname{ISAM}(N, P)}=\log _{B(N)}$
$I_{\operatorname{ISAM}(N, P)}=\left\{\begin{array}{l}1 \text { if } N \leq P \\ 1+I_{\mathrm{ISAM}\left(\frac{N}{2}, P\right)}\end{array}\right.$ otherwise

The proof is identical to part 1 , excepting that the base case is $N=P$

Challenge Question [no points]

Assume you have an on-disk array of records in sorted order. What is the IO complexity of building an ISAM index, and what is an algorithm that achieves this bound.

[^0]
Answer

The following simplified algorithm achieves the complexity bound. An algorithm with a better constant factor exists, but is less concise.

Assume we have the size of the array to start. If we don't, it can be obtained in $\mathrm{O}(\mathrm{N})$ IOs.

Maintain $\log _{P(N)}$ in-memory buffered directory pages, one for each level of the tree.

Scan through each page of the on-disk array in-order. Append the first key on the page to the last directory page in the buffer. If the directory page fills up:

1. Write the directory page to disk.
2. Clear the buffered directory page.
3. Direct the next key write one level up in the tree.
```
fn build_isam(data: FileArray, index: ISAM)
{
    let mut buffer = vec![DirectoryPage::alloc();
ceil(log_2(data.len()))]
    let mut level = buffer.len()-1;
    for page in data
    {
        buffer[level].append(page[0])
        if buffer[level].is_full() {
            index.append_directory_page(buffer[level], level)
            level -= 1
        } else {
            level = buffer.len()-1;
        }
    }
}
```

This is an example of a read-once algorithm. Each page is read exactly once, and every page of the ISAM index (of which there are $O(N)$) is written exactly once.

[^0]: ${ }^{1}$ e.g., see https://cse.buffalo.edu/courses/cse250/2023-fa/slides/lec12-c.pdf, slide 5

