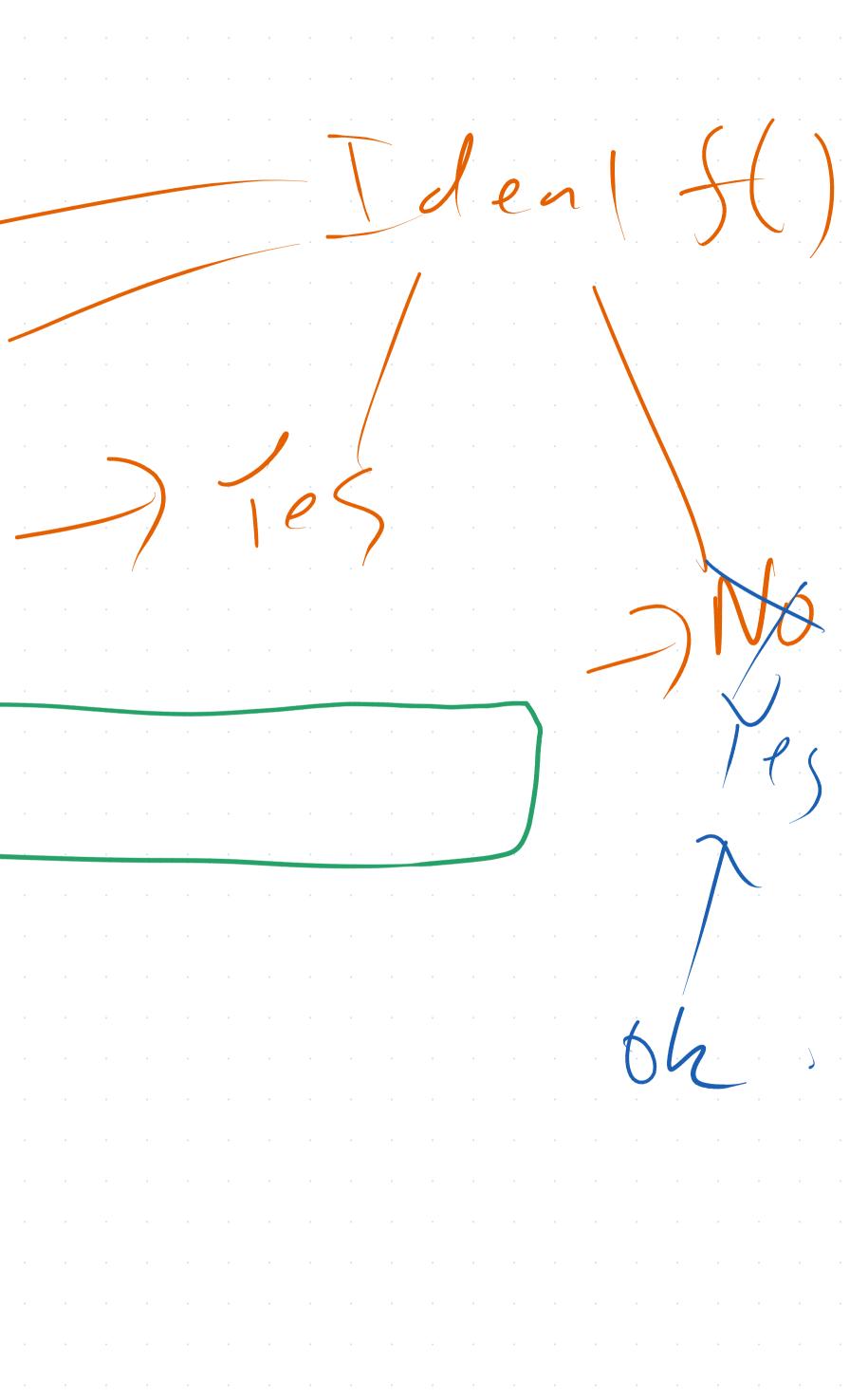
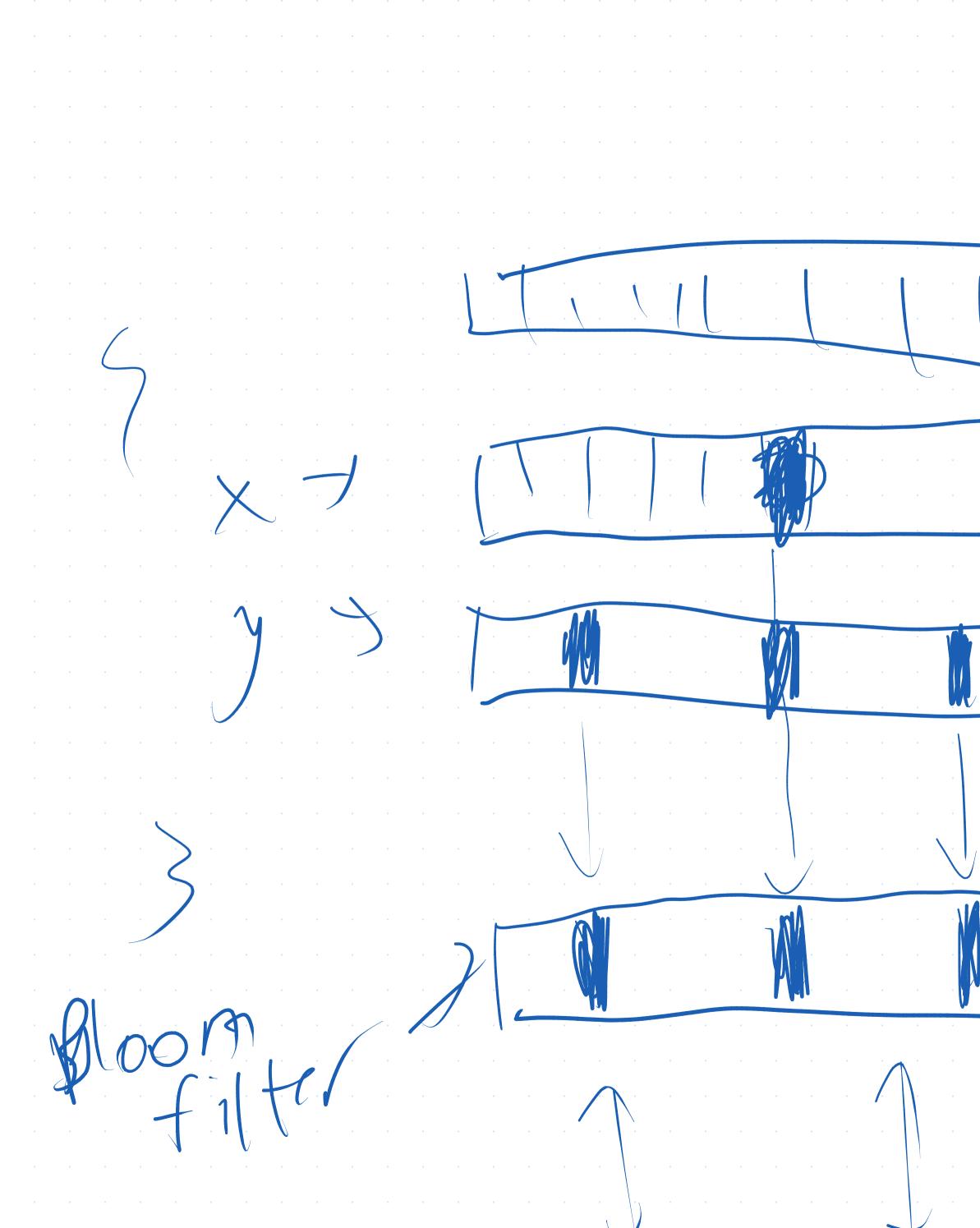

CSE 410 – Advanced Data Structures **Topic 07: Write–Optimized Structures**


Oliver Kennedy


© Oliver Kennedy, 2024

High Contention 107 RCooplination Required

								· · ·	
	e	 							e
			· ·				<u> </u>		•
								· · · ·	
-								· · · ·	
-		· ·	· ·			· · ·			
		· ·	· ·	· ·	· · · ·			Bita	51
		 	· ·						
								· · ·	
	•	· ·				· · ·			
•	•	 • •							

		•		•	•	•															· · · · ·				
						•																			
					•	•			•		•			•		•		1					•		
		1			1	•					•			1											
						•			•							1								÷	
																						-			
					1									1		· [V - 2		•	•			•	•	• •
	1.1			1.			1.1				1.								$\sim 10^{-1}$						
																				· · · · · · · · · · · · · · · · · · ·			•		
					1				1					1		1	1	1					•	1	
												•					1		•	•	. \ .			•	
																				•					
•			•	•			•					•	•		•			•	•	•			•	•	
									1																
				1		•			1		•				1		1	1	1					$ \geq $	
				1		•			•		•				1	•		1	•	•					
						•	1																		
				1					1		•	1			1		1	1	1			-			
				1		•			•		•				1	•		1		•			1		
			•		•	•		•	÷.	•	•	•	•	•		•	•		•	•			t		• (•
					•	•		•	•	•	•	•	•				•		•	•		J	-	(•
				1		•			•		•				1	•		1		•				X	
			•		•	•		•	÷	•	•	•	•	•		•	•		•	•		•			• •
			•	•		•		•	•	•	•	•	•		•	•	•	•	•	•		٠	•		
			•		•	•		•	1	•	•	•	•	•		•	•		•	•		•		•	• •
•			•	•		•		•	÷	•	•	•	•		•	•	•	•	•	•		٠	•	•	• •
			•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	• •
•			•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		٠	•	•	• •
			•	•		•	•	÷	÷	•		•	•		•	•	•		•	•		•	•	•	• •
		•		•	•	•		•	•	•			•	•	•	•	•		•	•			•	•	
				•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•			•	1	
		•		•	•	•		•	•		•	•	•	•	•	•		•					•	1	
				•	•	•		•	•	•			•	•	•	•	•		•	•			•	•	
•		•	•	•	•	•		•	÷	•		•	•	•		•	•		1	•		•	•	÷	

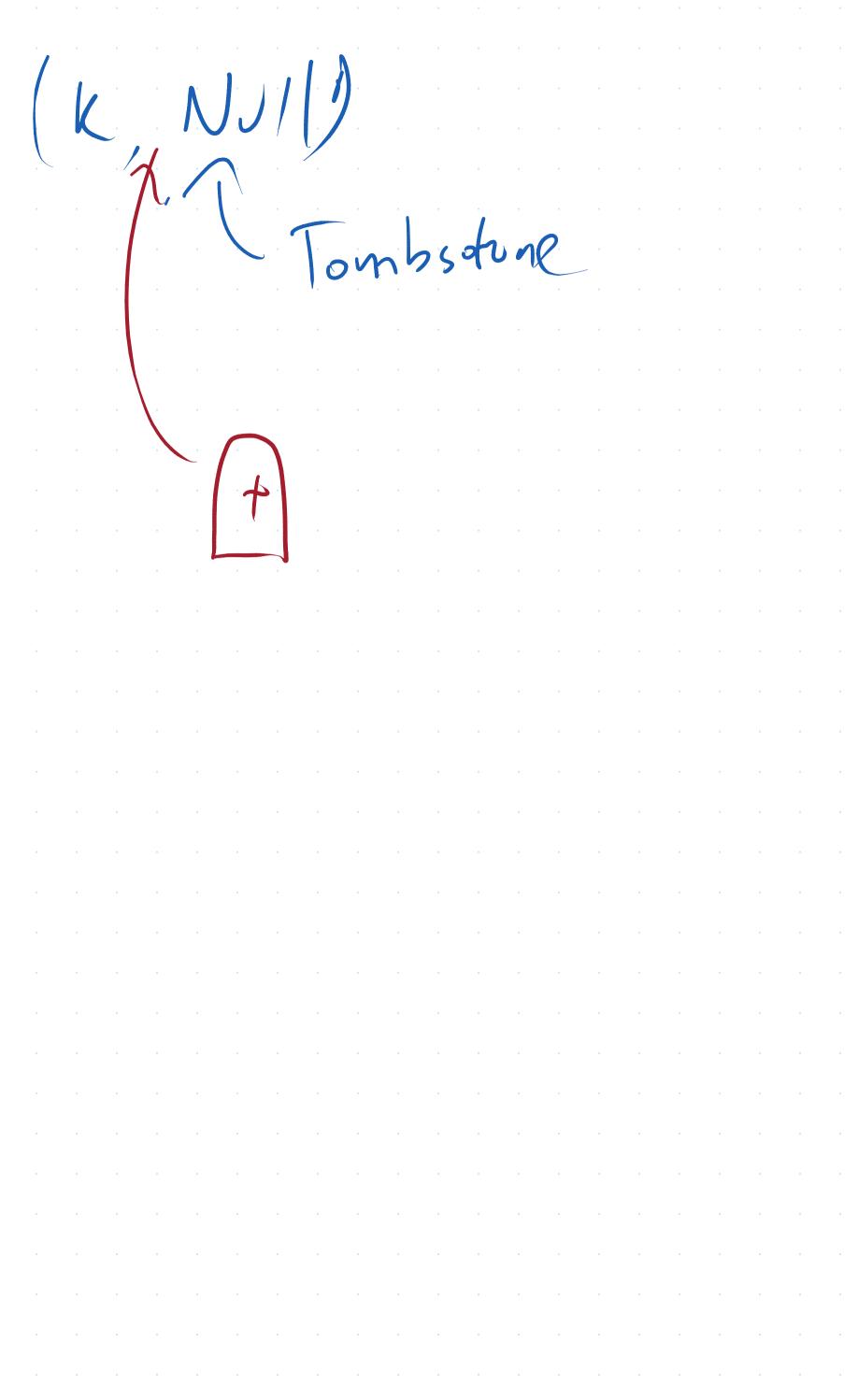
chang 0

l's releter van zie van de te

exactly pulea

•	 · ·	•	· ·		· ·	•		-		•	•
	 · ·	·		· · ·							
				· ·							
									 •	•	
	· ·		· ·	· ·	· ·	•	· ·			•	
			· ·								
					н н	J				•	
				· ·						•	
				· ·							
			· ·	· · ·						•	
				· ·							
	 · ·	·	· ·	· ·							

toriall inferts Sorted Array Jusert23 C


Howig a sold run sprent $= \frac{1}{2} + \frac$ = ISAM INLOX/BEIRER (Bridling) - OF-Based Index Wor Interpolation Search Fercepointertable

Idra 1 - Store min Max () tiscard requests that are nutil canve Regimin, Max SFRnce Pointer table Sives us min máx () No overhad

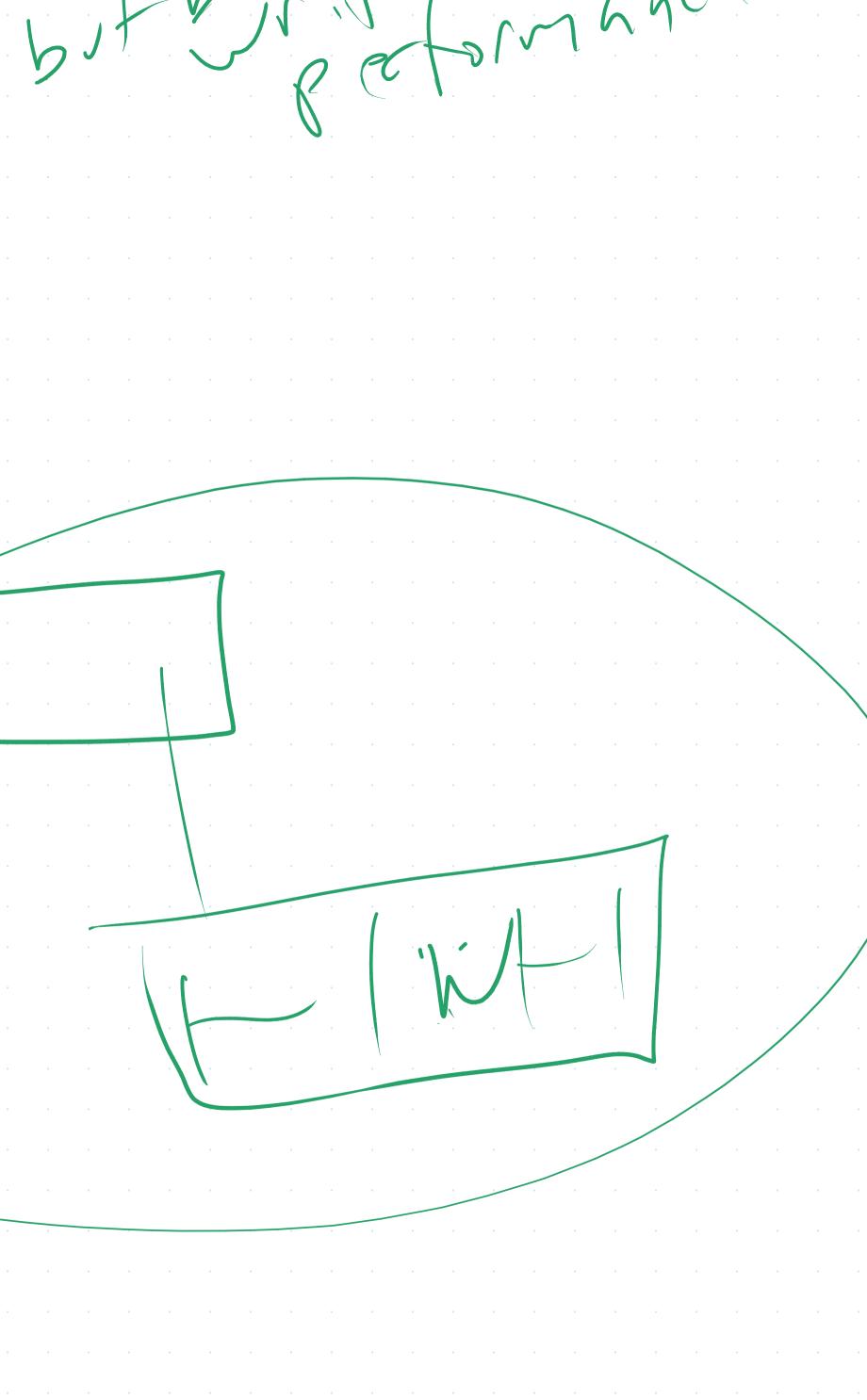
onfiltertaraneters -Size of the bitvedo L'Hotbits that each element sets 5.2e it bit section of pland

1075 read/051 X Ü 1064 1 OPB 0 o lex. ·le (

Delete (k) = Update (K, NJI) 1 Tombsolve So haw he we implement Update (k, 42) Update (k, 42)

and a second . The second se and a second second

				•												
					e	•						•				
				•												
4					•											
				•												
															_	
												•				
					•											•
				•												
				•												
				•												
					•			•	•				•	•		•
				•												
					•											•
				•												
				•												
	•	•	•	•	•	•	•		•	•	•					•


• •			۰	•	•	•			• •	0		0 0				•			•	· ·					•	• •	•	•			• •
			1			•																									
		•		•	•	•	• •	•	· · ·			• •		· ·			•	•		· ·					•		•	•	• •	· ·	· ·
					•	•	· ·	· ·	• •		•	• •	•	• •		· ·	•	•		· ·		· ·		• •	•		•	•	• •		
	•				•	•	· ·	· ·	• •		•	• •	•	• •		· ·	•	•		· ·		· ·		• •	•		•	•	• •		
					•	•	· ·		• •		•	• •	•	• •		· ·	•	•		· ·		· ·		• •	•		•	•	• •		
		•			•	•	· ·	· ·	• •		•	• •	•	• •		· ·	•	•	•	· ·		· ·			•			•	• •		
					•	•	· ·		· ·		•	· ·		•		· ·	•	•		· ·				• •	•		•		• •		
					•	•	· ·	· ·	· ·		•	• •	•	• •		· ·	•	•		· ·		· ·		• •	•		•		• •		
					•	•			· ·			• •		· ·		· ·									•				• •		
					•	•	· ·		• •		•	· ·		• •			•	•		· ·		· ·			•		•	•			
- [.		•		•	•	•		•	• •	•		• •				• •		•		· ·			• •						• •	· ·	· ·
н — н	\neg			•	•	•	• •	· ·	· · ·			• •		•		· ·	•	•		· ·							•	•	• •	· ·	•
		•		•	•	•	• •	· ·	· · ·			• •		•		· ·	•	•		· · ·			• •				•	•	• •	· ·	• •
	 .			•	•	•		• •	· · ·			•		· ·		· ·	•	•		· ·							•	•		· ·	
																				· ·			•								
· · · ·		1	1							1		· ·																1			
· · · ·		1	1							1																					
		1	1							1											1										
· · · ·			1																		1										
			1			•				1											1								· · ·		
		1	1			•				1.1			1																		
· · ·	•	•			•	•	• •		• •		•	· ·	•	•			•	•		· ·				• •			•	•	· ·		
· · ·	•	•			•	•	• •		• •		•	· ·	•	· ·			•	•		· ·							•	•	· ·		· · ·
	•	•		•	•	•	• •	· ·	• •		•	• •	•	• •	· · ·	• •	•	•	•	•		· ·	•	• •	•	• •	•	•	• •		• •
	•	•		•	•	•	• •	•	• •		•	• •	•	• •	· ·	• •	•	•	•	• •		· ·	•	• •	•	• •	•	•	• •		· ·
· · ·				•	•	•		· ·	• •	•	•	• •		• •	· ·	· ·	•	•	•	· ·			• •		•	• •	•	•	•		· ·
· ·		•			•	•			• •	•	•	· ·													•			•			
· ·		•			•	•			• •	•	•	· ·													•			•			
· ·		•			•	•			• •	•	•	· ·													•			•			
· ·		•			•	•			• •	•	•	· ·													•			•			
· ·		•			•	•			• •	•	•	· ·					•								•			•			
· ·		•		•	•	•	· ·	•	• •	•	•	· ·	•	• •	· ·		•										•	•			

Cuersians Deversions insertions Jpe Jpe Jpe Jon Jpe FIGG >

	· ·										
	· ·	· ·	· · ·	· ·	· ·		· · ·	•	· ·	 	•
1		· ·	· ·	· ·	· · ·	· · · ·		•		· ·	•
	· ·	· ·	· ·				· ·	•	· ·	· ·	•
		· ·	· · ·						· ·		
											s S
		· ·	· ·		ar						•
	· ·	 	· ·	· ·	· ·	· · · ·				 	
			· ·		· ·						•

f(x) =) { Tre it x is a key on that level talse otherwise D XEThe set at keys 1 dech gt that lifed J J(X)= (falsent x & set of Regs J(X)= (true if x can be in the set

Mare bits per element LAPMORE CHANCEST - TUDIG Collisions on test (Prine bitsgetset, 50 more cullisions

1 more Marine 1 Je 1 5 dh 0254me Ph4

write solted Bitter O(B) per Binsertion O(1) anotzog write 1 50-1 O(R) sorten 601 D(x) = D(x)10/1 PEC read

Fence lointer Tabli

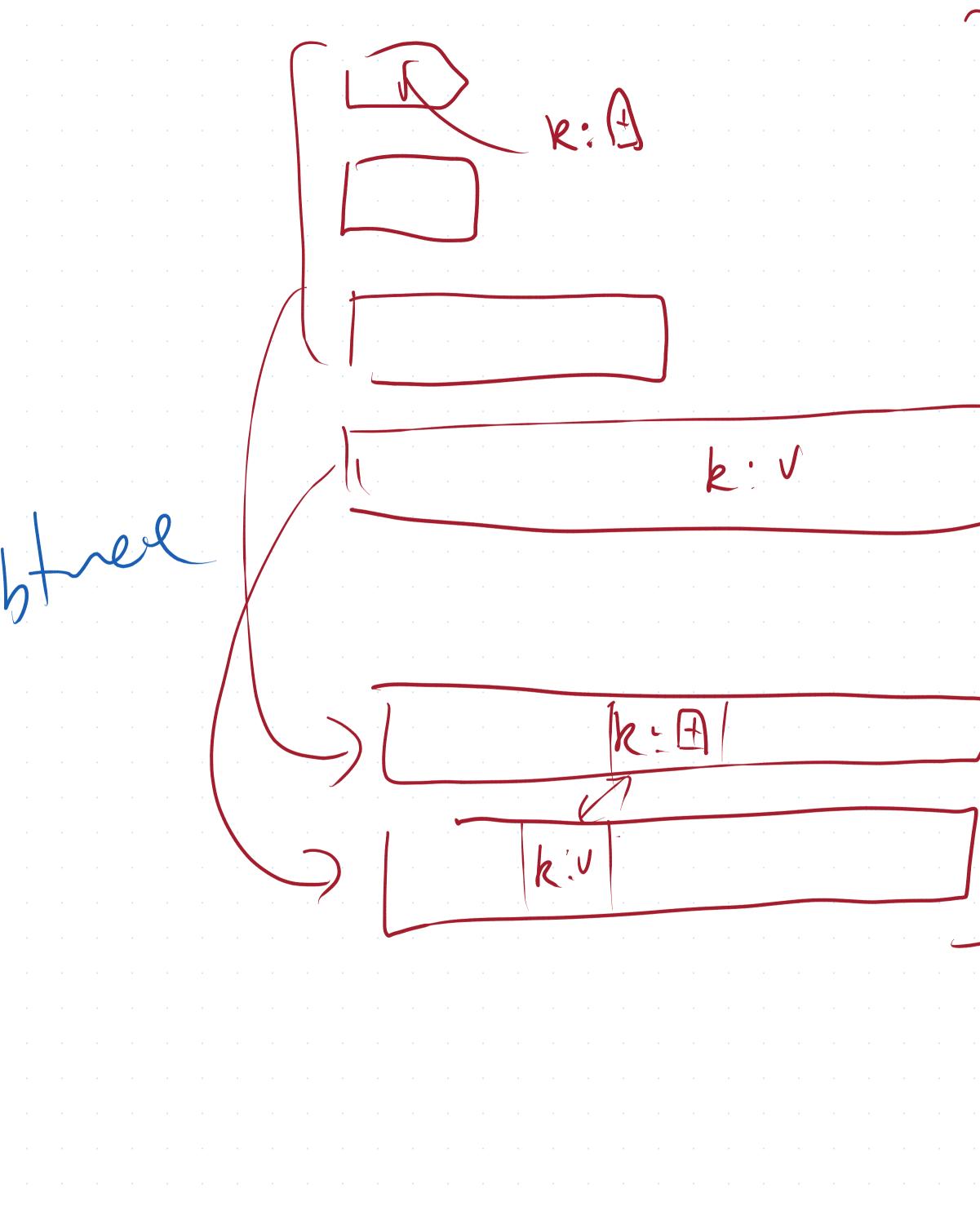
	· ·															
	· ·															
			·				•	•		•	•	•	•		•	•
2																
				· ·												
		· ·			• •											
		<u> </u>														
· ·																
			\sum_{i}	• •		•	•	•	•	•	•	•	•	•	•	•
					÷.				•	•	•	•	÷			•
	· ·					•	•	•	•	•			•	•	•	
	н н 1															
	· · ·															
	· ·															
· ·	· ·	· · ·	•	 	•	•	•	•	•	•			•	•	•	•
· ·																

Approximale Set $-(x) = true \int technically$ correct

0 b rect

Alrecholy Pable JEPKARG Buffer B = B = BRendered By Smill

pv3 Merging Merges" values for kess $\frac{1}{2}$ V, 0 NULL 7 Mez Skipped


Variant Vhrihmt (Fill butter With a profile of the second sort butter unite butter to JO(B) dish Sort buffer mergewith sorted) DWJ: arragondisk J Zoz Cent Access N. sorted array Access 1,50rted array0(l.gw)

•																	 						· · ·	 	
•	•	•	· ·		• •		· ·	•			· ·		· ·			• •	 		•	· ·	• •		· ·	 • •	
•	•	•	• •		• •	· · ·	· ·			· ·	· ·	• •	•		•	• •	 			•	• •	• •	· · ·	 • •	· · ·
•	•	•			• •		· · · ·	•						• •	•	• •	 	• •	•					 	
	•	•			• •			•								• •	 		•					 	
	•		•				• •		• •		•	• •	•				 • •			•	•	• •	• •	 • •	
	•																								
						· · ·											 							 	
•	•		· ·		· ·		· · ·				· ·		· ·			· · ·	 		•		· ·		· · ·	 · ·	
•	·	•	· ·		• •		• •	•		· · ·	· ·		•	• •	•	• •	 • •	• •	•	• •	•		· · · ·	 • •	
(•	•		•	• •		· · · ·	•						• •	•	• •	 	• •	•					 	
		•			•			•			· · · · ·			• •	•	•	 	•	•						
	•	•			•			•						•	•	•	 	• •	•					 	
	•	•																							
																	 		•					 	
•	•	•	· ·				• •				· ·		• •			· ·	 		•		• •		· · ·	 • •	
	•	•															 							 	
•	•	•		•	• •			•						• •	•	• •	 	• •	٠					 	
	•	•				• •				· ·							 							 	
•		•		•		• •		•		•			•			• •	 		•			• •		 •	
	•	•																							

 $\frac{1}{900} = \frac{1}{900} = \frac{1}$ $on \left[oup_{JD}(x)\right]$ $O_{1} = \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \end{array} \right) \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \end{array} \right) \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \end{array} \right) \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \end{array} \right) \left(\begin{array}{c}$ $\frac{1}{14} + \frac{1}{14} + \frac{1}{14}$ f = h(x) mod Z = 0 a = h c xise at in b EP. I contract the second second second 2 1 1

B Size of best vellos optimal to this perobject

14 Betz - ElBSIDON JACK

12 Morente receive A N_{3} kry if last (nyl

	•			•									•																	
•	•		1										•		· ·			· ·												
•	•	 •	•	•									•	•	• •		•	• •							•	•				
	•	 •	•	•				•	• •	•	• •	• •	a.		• •			• •		• •	•	•			•				• •	•
	•	 •	•	•			•						•	•		•	•	• •						• •	•	•				
	•	 •	•	•					•				0		• •			• •		• •				• •	•	•			• •	
•	•			•		•		•	•	•	•	• • •	•		• •					• •	• •	• •	• •		•					
	•	 •	•	•												•		•						• •		•	• •		•	•
																						• •								
																						• •								
			1																											
	•																			· · ·										
	•	 •		•							• •		•	•	• •			• •				• •							· · ·	•
	•		1																							1		1		
•	•	 •	•	•	• •	•		•	• •	• •	• •	· · ·			• •			• •		• •	• •	•			•					•
	•	 •	•	•	• •		•						•			•	•	• •						•		•				
	•	 •	•	•	•	•		•	• •	•	•	• •			• •	•		• •		• •	•		• •		•	•			• •	•
	•	 •	•	•			•						•	•		•	•	•						• •		•				
•						•		•	•	•	•	• •			• •					• •	•		• •		•					
	•	 •	•	•	•								•	•		•	•	•	•					• •		•			• •	•
											· · ·										<u>. </u>									

Log Structured M-1541 Variant Index Gye-PC

bou(bits [B] = [tg/se] $h = \frac{1}{2} h =$ an insolt (x) (B) = truebits [h(x) (B) = trueBit 2 million bet 3 million bet 6 there insert 42 $6 n \left[b \delta k J \rho \left(x \right) \right]$ 6.ts [hk/%]3]

- 6/3 per 257 tg (4)

Ang 131.5 S Z B13 astra= 02 Blugar 2 (47 e 3 55 $N = 2^{k}B$ 0 B luzer of 2⁽⁻¹3 (hye i $k = \left(\frac{\omega_{g}}{B} \right)$ to stire N records

bits[R][B] = ff(se) $h_{T}(\mathbf{X}) = f_{0}(\mathbf{X}) + f_{0}(\mathbf{X}) +$ $\int \partial \mathcal{N} \left(\partial \mathcal{N} \mathcal{N} \mathcal{N} \right) \left(\frac{\chi}{\chi} \right)$ provide a second se for i in (o, R) if (b, t<(i)/h(v)) if (t, t) (h(v))for $C \in C R$ $b_{1}+5[i][h_{2}-(x)][h_{2}-(x)][h_{3}-(x)$ return the

Mer Marine Toma 0

rend $\begin{array}{l} O\left(\log\left(\frac{N}{B}\right)\right) \circ O\left(\log(N)\right) = O\left(\log^{2}(N)\right) \quad (ost por read) \\ = \left(\log(N) - \log(B)\right) \circ \left(o_{5}(N)\right) \quad (ost por read) \\ = \left(\log(N) - \log(B)\right) \circ \left(o_{5}(N)\right) \quad (cost por read) \\ \quad (s_{2}(N) - \log(B)) \circ \left(o_{5}(N)\right) \quad (cost por read) \\ \quad (s_{2}(N) - \log(B)) \circ \left(o_{5}(N)\right) \quad (cost por read) \\ \quad (s_{2}(N) - \log(B)) \circ \left(o_{5}(N)\right) \quad (cost por read) \\ \quad (s_{2}(N) - \log(B)) \circ \left(o_{5}(N)\right) \quad (cost por read) \\ \quad (s_{2}(N) - \log(B)) \circ \left(o_{5}(N)\right) \quad (cost por read) \\ \quad (s_{2}(N) - \log(B)) \circ \left(o_{5}(N)\right) \quad (cost por read) \\ \quad (s_{2}(N) - \log(B)) \circ \left(o_{5}(N)\right) \quad (cost por read) \\ \quad (s_{2}(N) - \log(B)) \circ \left(o_{5}(N)\right) \quad (cost por read) \\ \quad (s_{2}(N) - \log(B)) \circ \left(o_{5}(N)\right) \quad (cost por read) \\ \quad (s_{2}(N) - \log(B)) \circ \left(o_{5}(N)\right) \quad (cost por read) \\ \quad (cost por read) \quad (cost por read) \quad (cost por read) \\ \quad (cost por read) \quad (cost por read)$ reg A gmplikich Witch Observation: Each record is copied Retires (at nost) Alog(13) Ewc. Kamplitinti.

	•			•	•	•	•	•	•	•	•			•	•	•		•	•	-
1	•	•	1	•	•		•			1					•	•	1	•	•	•
•	•	•		•	•	1	•	•	•	•	•	•	•	•	•	•		•	•	•
	•	•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•
1		•		•	•	•	•	•			•	•	•	•	•	•				•
	•																			
	•																			
	•																			
	•																			
	•	•					•							•	•					•
		•															÷	•		
÷	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	÷	•	•	•
1		•		•	•		•	•			1				•	•				•
	•	•	•	•	•	1	•	•	•	•	•	•	•	•	•	•	1	•	•	•
1		•		•	•	•	·	•	•			•	•	•	•	•	1			•
	•	•	•	1	1		1		•	•		•	•			1		•	•	•
	•	•		•	•	•	•	•	•	•		•	•	•	•			•	•	•
		•		•	•	•					•	•	•			•	•			•
•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•																			
	•																			
•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

 $\Lambda = \Lambda$ ert (Λ) 1

	 	· · · ·		· · ·	
n n n n n n n n n n n n n n n		 	· · · ·		· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	 . .<	 	· · · ·	· · ·	· · ·	

K(00)61 CB, BDCC, CD

Nrecordy, egenrecord C) O(N(12fB))

6	, Ø	P				6	<i>ħ1</i>			N	25	†	Troy			-	t.)		3	•
			· · •																	,
	0	2	01			· 7	J		•	•	•	•	•		N		P	5		•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
			•			÷	÷			•		•	•							
	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•		•	•	•	•		•	•	-	•			•	•	•	•	•	•	•
	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

B = B = B = 0 $add(x) \rightarrow Increts$ The follow Set (x) > If x was added return trie

Lever the condition of the B. kyth, Vec (File) On insert (datin) add to butter -thutter full Vrite aut to disk while there we zarry sat a level Minge into next levelslown