
Can we do better?

Observation: Trees have logarithmic access costs

Partition the data according to a simple, predictable, deterministic
pattern

e.g., "first letter" or "first k bits"0

Allocate N pages, use f(key) to figure out which page a record is
supposed to live on

Summary Idea: Assume an f(x) that gives you a number between 1
and N

Fast: O(1) page acesses (ideally)

Pros

Need to pick N correctly

Class names: “X”, “S” common letters: “W” completely empty

Clustering: Data is generally not uniformly distributed

Cons

Idea: Buckets

Pseudo-Random: Statistically unpredictable output between 0
and 2{# of hash bits}-1

Deterministic: h(x) is always the same

Hash Functions: h(x) -> Transform any x into a pseudo-random
value

5 % 2 = 1

5 % 3 = 2

% = Modulus = Remainder after Division

Adaptation: Modulus Operator Makes #s between 1 and N

Idea: Pick a Deterministic “Reshuffling”

Hash Tables

6 % 3 = 0

7 % 3 = 1

8 % 3 = 2

h(x) % N gives you a number between 0 and N-1

Deviation from uniform random capped at N / [Some
arbitrarily big number]

Unless [Some arbitrarily big number] % N = 0… then
randomness perfectly preserved

As long as N << [Some arbitrarily big number], the result is still
“random enough”

If h(x) gives you a number between 0 and [Some arbitrarily big
number]

Allocate N pages

h(key) % N tells you on which page the record with ‘key’ lives

Use “overflow pages” to handle cases where you need to put too
much data in one page.

Overall Solution:

Fast: O(1) page acesses (ideally)

Data is distributed more uniformly

Pros

Only supports == tests

We still don’t know how to pick N… and what if the “best” N
changes?

Cons

Example:
def h(x):
 return x; # Bad, but easy “hashing” fn

Data: 1, 2, 5, 8, 9, 11

Problem: Changing N requires re-hashing everything

Idea: “Dynamic” Hashing

1 -> 1, 2 -> 2, 5 -> 0, 8 -> 3, 9 -> 4, 11 -> 1

Now: N = 5

1 -> 1, 2 -> 2, 5 -> 5, 8 -> 2, 9 -> 3, 11 -> 5

Change: N to 6

If h(x) % 5 = 4

Then h(x) % 10 = Either 4 or 9

Observation: Jumping between multiples of N make reshuffling
easier

Use 1 bit (2 pages), 2 bits (4 pages), 3 bits (8 pages), etc...

But make the decision on a page-by-page basis

Use an “index” that tracks which pages correspond to which hash
buckets

Decide how to split on a bit-by-bit basis:

If so, clone the index: Buckets N to 2N-1 start off pointing to
the same pages as Buckets 1 to N-1

Check to see if you need to double the number of hash buckets

Allocate a new page

Records that have a 1 for the extra bit go to the new page,
records with a 0 stay in place

Re-hash the contents of the page, using one more bit than before.

Point the appropriate index entry(ies) at the new page

If you need to split a page

The same happens in reverse to merge two pages together

The number of buckets in the index

Which pages have been allocated

For each allocated page, how many bits of hash are being used
for records on that page.

To pull this off, you need to track...

