
Managing
Changing Data

April 4, 2017

Safely Changing Data
• When I make changes, how do I avoid breaking assumptions?

• Data Modeling

• Constraints

• When I make changes, how do I avoid messing with other people’s
ongoing work?

• Transactions

• When I make changes, how do I keep track of things that I need to
keep track of?

• Stream Processing, Incremental View Maintenance

Defining Relations in SQL

3

CREATE TABLE Officers
 (FirstName CHAR(20),
 LastName CHAR(20),
 Ship CHAR(5),
 ID INTEGER
)

CREATE TABLE Ships
 (ID CHAR(5),
 Name CHAR(20),
 Location CHAR(40)
)

The schema defines
not only the column

names, but also their
types (domains)

Defining Relations in SQL

3

CREATE TABLE Officers
 (FirstName CHAR(20),
 LastName CHAR(20),
 Ship CHAR(5),
 ID INTEGER
)

CREATE TABLE Ships
 (ID CHAR(5),
 Name CHAR(20),
 Location CHAR(40)
)

The schema defines
not only the column

names, but also their
types (domains)

For example a 20-
character string

Modifying Relations

4

DROP TABLE Officers

ALTER TABLE Ships
 ADD COLUMN Commissioned DATE

Destroy the relation ‘Officers’
All schema information AND tuples are deleted

Add a new column (field) to the Ships relation
Every tuple in the current instance is extended with a

‘null’ value in the new field

Adding and Deleting Tuples

5

INSERT INTO Officers (FirstName, LastName, Ship)
 VALUES (‘Benjamin’, ‘Sisko’, ‘74205’)

DELETE FROM Officers O
 WHERE O.Ship = ‘2000’

Insert single tuples using:

Can delete all tuples satisfying some condition (e.g., Ship = 2000)

More powerful data manipulation commands are available in SQL
(We’ll discuss them later in the course)

Data Modeling
• Schema: The structure of the data

• Structured Data: Relational, XML-DTD, etc…

• “Unstructured” Data: CSV, JSON

• But where does the schema come from?

• Data represents concepts!

• Model the concepts

Entity-Relation Model
• A pictorial representation of a schema

• Enumerates all entities in the schema

• Shows how entities are related

• Shows what is stored for each entity

• Shows restrictions (integrity constraints)

ER Model Basics

Entity: A real-world object distinguishable from other
objects. (e.g., a Starfleet Officer)

An entity is described through a set of attributes

Officers

oid
name

rank

ER Model Basics

Officers

oid
name

rank

Entity Set: A collection of similar entities. (e.g., all Officers)

Entities in an entity set have the same set of attributes

Each attribute has a domain (e.g., integers, strings)

ER Model Basics

Entity sets must have a key, an attribute (or combination of attributes)
guaranteed to be unique for every entity in the set.

• Officer ID for officers
• Ship ID for ships
• UBIT for UB students
• Course Code+Semester for courses

Keys are underlined in ER Diagrams

Officers

oid
name

rank

Visited

when

ER Model Basics

Officers

oid
name

rank

Planet

pid name

Relationship: Associations between 2 or more entities.
Relationship Set: A collection of similar relationships.
(an n-ary relationship set relates Entity sets E1-En)

Relationships may have their own attributes.

Commands

CommanderSubordinate

ER Model Basics

Officers

oid
name

rank

There can be relationships between entities in the same entity sets

Key Constraints

Commands

CommanderSubordinate

Officers

oid
name

rank

Visited

when

Officers

oid
name

rank

Planet

pid name

CrewOfficers

oid
name

rank

Ship

shipid class
name

Consider these relationships
• One ship can have many crew, but each crew member has only one ship
• Each officer has one commander, but officers might have many subordinates
• Each planets may have been visited by many officers, and each officer may
have visited many planets

Key Constraints

Consider these relationships
• One ship can have many crew, but each crew member has only one ship
• Each officer has one commander, but officers might have many subordinates
• Each planets may have been visited by many officers, and each officer may
have visited many planets

1-to-1 1-to-Many Many-to-1 Many-to-Many

Key Constraints

Commands

Officers

oid
name

rank

Visited

when

Officers

oid
name

rank

Planet

pid name

CrewOfficers

oid
name

rank

Ship

shipid class
name

Key constraints identify entities that participate in
at most one relationship in a relationship set

We denote key-constraints with an arrow

CommanderSubordinate

Commands

Crew

Participation Constraints

Officers

oid
name

rank

Ship

shipid
name

class

Participation constraints require participation in a relationship
(and are denoted as bold lines)

Commands

Crew

Participation Constraints

Officers

oid
name

rank

Ship

shipid
name

class

Every Ship must have crew, and every officer must crew a ship.

Participation constraints require participation in a relationship
(and are denoted as bold lines)

Commands

Crew

Participation Constraints

Officers

oid
name

rank

Ship

shipid
name

class

Every Ship must have crew, and every officer must crew a ship.
Every Ship must have a commander.

Participation constraints require participation in a relationship
(and are denoted as bold lines)

when

Awarded

Weak Entities

Commendation

awardid name

Officers

oid
name

rank

A weak entity can be identified uniquely only relative to the primary key
of another (owner) entity.

The weak entity must participate in a one-to-many relationship (one
owner, many weak entities)

ISA

Parent
Ship

ISA (‘is a’) Hierarchies

Ships

shipid
name

class

Cargo Ships

capacity

Shuttlecraft

ISA Hierarchies define entity inheritance
If we declare A ISA B, then

every A is also considered to be a B

Overlap constraints: Can a ship be a
cargo ship and a shuttlecraft?

Covering constraints: Does every ship
have to be a cargo ship or a

shuttlecraft?

Reasons for using ISA:
Adding descriptive attributes specific to

a subclass (cargo ship capacity)

Identifying entities in a specific type of
relationship (shuttlecraft of a big ship)

Visited

when

Transport

Aggregation

Officers

oid
name

rank

Aggregation: allows us to
treat a relationship as an

entity set (for the purpose of
participating in other

relationships)

Contrast with ternary relationship

Planet

pid name

Ships

shipid
name

class

Conceptual Design in ER
• Design choices

• Should a concept be modeled as an entity or an
attribute of another entity?

• Should a concept be modeled as an entity or a
relationship between entities?

• What kind of relationship: Binary, Ternary, N-ary,
Aggregation?

• Constraints
• A lot of data semantics can (and should) be captured.
• Not all constraints are expressible in ER diagrams.

Entity vs Attribute
• Expressing the Location of an Officer

• Option 1: An attribute of Officers
• Option 2: A Planets entity set and a relationship set Location

• Which we use depends on the semantics of the data.
• Can an Officer have multiple locations? (e.g., transporter

accidents, time travel, etc…)
• Attributes are single-valued, model Planets as entities.

• Are the details of locations relevant to queries? (i.e., Find all
officers on a Class-M planet).
• Attributes are atomic, model Planets as entities.

Entity vs Attribute

Officers

oid
name

rank
class

Planet

pid name

Located

from to

Problem: Can only have one location for each
officer (no time ranges)

We want to encode multiple instances of the
descriptive attributes of the relationship instance

Durationfrom to

Solution: Add a duration entity and make location a
ternary relationship

Entity vs Attribute

Officers

oid
name

rank
class

Planet

pid name

Located

Summary
• The ER Model is a popular way to design schemas

(and maps nicely to SQL)

• Basic Constructs: Entities, Relationships, and Sets
of both.

• Additional Constructs: Weak Entities, ISA
hierarchies, Aggregation

• There is no one ‘right’ model for a given scenario.

• Understanding how to design a schema is important.

Integrity Constraints

25

• “Correctness” Properties on Relations

• … enforced by the DBMS.

• Typically simple uniqueness/existence
properties, paralleled by ER Constraints

• … we’ll discuss more complex properties
when we discuss Triggers later in the term.

• Database optimizers benefit from constraints.

Integrity Constraints

• Domain Constraints

• Limitations on valid values of a field.

• Key Constraints

• A field(s) that must be unique for each row.

• Foreign Key Constraints

• A field referencing a key of another relation.

• Can also encode participation/1-many/many-1/1-1.

• Table Constraints

• More general constraints based on queries.

26

Domain Constraints

• Stronger restrictions on the contents of a
field than provided by the field’s type

• e.g., 0 < Rank ≤ 5

• Mostly present to prevent data-entry errors.

27

Postgres: CREATE DOMAIN Rank AS REAL
 CHECK (0 < VALUE AND VALUE <= 5)

Oracle:
CREATE TABLE Officers (
 …
 Rank REAL,
 CHECK (0 < Rank AND Rank <= 5));

Domain Constraints

• Special domain constraint: NOT NULL

• Field not allowed to contain NULL values.

28

CREATE TABLE Officer(
 oid INTEGER NOT NULL,
 name CHAR(50),
 birthday DATE
);

Key Constraints

• A set of fields that uniquely identifies a
tuple in a relation.

• There can be multiple keys for a relation.

29

Officers

birthday
name

age

Key Constraints

• A set of fields that uniquely identifies a
tuple in a relation.

• There can be multiple keys for a relation.

29

Officers

birthday
name

age

Key Constraints

• A set of fields that uniquely identifies a
tuple in a relation.

• There can be multiple keys for a relation.

29

Officers

birthday
name

age

Key Constraints

• A key satisfies the following two properties:

• No two distinct tuples have identical
values in all the fields of a key.
• Two officers can have the same name, or the same

birthday/age, but not both name and birthday/age.

• No subset of the fields of a key has the
above property.
• Name+Age+Birthday is not a key (it is a superkey)
• Name+Age is a key, and Name+Birthday is a key.

30

Defining Key Constraints

31

name

Officers

oid
birthday

age

CREATE TABLE Officer(
 oid INTEGER, name CHAR(50),
 birthday DATE, age REAL,
 UNIQUE (name, age),
 CONSTRAINT OfficerDay UNIQUE (name, birthday),
 PRIMARY KEY (oid)
);

Defining Key Constraints

32

CREATE TABLE Officer(
 oid INTEGER, name CHAR(50),
 birthday DATE, age REAL,
 UNIQUE (name, age),
 CONSTRAINT OfficerDay UNIQUE (name, birthday),
 PRIMARY KEY (oid)
);

UNIQUE identifies a key constraint

Defining Key Constraints

32

CREATE TABLE Officer(
 oid INTEGER, name CHAR(50),
 birthday DATE, age REAL,
 UNIQUE (name, age),
 CONSTRAINT OfficerDay UNIQUE (name, birthday),
 PRIMARY KEY (oid)
);

UNIQUE identifies a key constraint

Defining Key Constraints

33

CREATE TABLE Officer(
 oid INTEGER, name CHAR(50),
 birthday DATE, age REAL,
 UNIQUE (name, age),
 CONSTRAINT OfficerDay UNIQUE (name, birthday),
 PRIMARY KEY (oid)
);

UNIQUE identifies a key constraint

PRIMARY KEY identifies a key constraint that will
commonly be used to refer to tuples in this relation.

Defining Key Constraints

33

CREATE TABLE Officer(
 oid INTEGER, name CHAR(50),
 birthday DATE, age REAL,
 UNIQUE (name, age),
 CONSTRAINT OfficerDay UNIQUE (name, birthday),
 PRIMARY KEY (oid)
);

UNIQUE identifies a key constraint

PRIMARY KEY identifies a key constraint that will
commonly be used to refer to tuples in this relation.

Defining Key Constraints

34

CREATE TABLE Officer(
 oid INTEGER, name CHAR(50),
 birthday DATE, age REAL,
 UNIQUE (name, age),
 CONSTRAINT OfficerDay UNIQUE (name, birthday),
 PRIMARY KEY (oid)
);

UNIQUE identifies a key constraint

PRIMARY KEY identifies a key constraint that will
commonly be used to refer to tuples in this relation.

CONSTRAINT (optionally) assigns a name to any constraint.

Defining Key Constraints

34

CREATE TABLE Officer(
 oid INTEGER, name CHAR(50),
 birthday DATE, age REAL,
 UNIQUE (name, age),
 CONSTRAINT OfficerDay UNIQUE (name, birthday),
 PRIMARY KEY (oid)
);

UNIQUE identifies a key constraint

PRIMARY KEY identifies a key constraint that will
commonly be used to refer to tuples in this relation.

CONSTRAINT (optionally) assigns a name to any constraint.

Visited

when

Officers

oid
name

rank

Planets

pid name

Foreign Key Constraints

35

• Used when a tuple in one relation needs to
refer to a tuple in a different relation.

• The referenced tuple must exist.

Foreign Key Constraints

36

Visited

when

Officers

oid
name

rank

Planets

pid name

CREATE TABLE Visited(
 oid INTEGER, pid INTEGER, when DATE,
 PRIMARY KEY (oid, pid),
 FOREIGN KEY (oid) REFERENCES Officers,
 FOREIGN KEY (pid) REFERENCES Planets
);

Foreign Key Constraints

37

Commands

CommanderSubordinate

Officers

oid
name

rank

CREATE TABLE Commands (
 Subordinate INTEGER,
 Commander INTEGER,

 PRIMARY KEY
 (Subordinate, Commander),

 FOREIGN KEY (Subordinate)
 REFERENCES Officers(oid),
 FOREIGN KEY (Commander)
 REFERENCES Officers(oid)
);

Foreign Key Constraints

38

Commands

CommanderSubordinate

Officers

oid
name

rank

CREATE TABLE Officers (
 …
 Commander INTEGER,
 …
 FOREIGN KEY (Commander)
 REFERENCES Officers(oid)
);

What about the Fleet Admiral (no commander)?
How do we insert the first tuple into Officers?

Enforcing Constraints

39

• Basic Enforcement

• Reject Inserts/Deletions/Updates that
introduce constraint violations.

• Insertions: Domain, Key, FK Constraints

• Updates: Domain, Key, FK Constraints

• Deletions: Only FK Constraints

Referential Integrity Enforcement

• Foreign Key Constraints are complex
• DBMSes will attempt to rectify violations

rather than reject the violating update.

• How should we react to an inserted tuple that
references a nonexistent foreign key?

• How should we react to a referenced tuple
being deleted?

• How should we react to a referenced tuple
being updated?

40

Referential Integrity Enforcement

41

How should we react to an inserted tuple that
references a nonexistent foreign tuple?

Referential Integrity Enforcement

41

How should we react to an inserted tuple that
references a nonexistent foreign tuple?

REJECT

Referential Integrity Enforcement

42

How should we react to a referenced tuple
being deleted? (Delete Planet)

Referential Integrity Enforcement

42

How should we react to a referenced tuple
being deleted? (Delete Planet)

1.Delete all referencing tuples (Visited)

Referential Integrity Enforcement

42

How should we react to a referenced tuple
being deleted? (Delete Planet)

1.Delete all referencing tuples (Visited)

2.Disallow the deletion until there are no
referencing tuples

Referential Integrity Enforcement

42

How should we react to a referenced tuple
being deleted? (Delete Planet)

1.Delete all referencing tuples (Visited)

2.Disallow the deletion until there are no
referencing tuples

3.Replace the referencing foreign key by
some default value (or NULL).

Referential Integrity Enforcement

43

How should we react to a referenced tuple
being updated? (Planet.pid changes)

Referential Integrity Enforcement

43

How should we react to a referenced tuple
being updated? (Planet.pid changes)

1.Update all referencing tuples (change
Visited.pid)

Referential Integrity Enforcement

43

How should we react to a referenced tuple
being updated? (Planet.pid changes)

1.Update all referencing tuples (change
Visited.pid)

2.Disallow the update until there are no
referencing tuples

Referential Integrity Enforcement

43

How should we react to a referenced tuple
being updated? (Planet.pid changes)

1.Update all referencing tuples (change
Visited.pid)

2.Disallow the update until there are no
referencing tuples

3.Replace the referencing foreign key by some
default value (or NULL).

Referential Integrity Enforcement

44

CREATE TABLE Visited(
 oid INTEGER, pid INTEGER, when DATE,
 PRIMARY KEY (oid, pid),
 …
 FOREIGN KEY (pid) REFERENCES Planets
 ON DELETE CASCADE
 ON UPDATE NO ACTION
);

CASCADE

NO ACTION

SET DEFAULT v
SET NULL

Delete or Update Reference
Reject Deletion or Update

Replace Reference with v or NULL

Constraint Validation

• A Transaction is a batch of DBMS Operations

•SET CONSTRAINT [name] IMMEDIATE;

• Perform constraint checking immediately
after an insert/update/delete.

•SET CONSTRAINT [name] DEFERRED;

• Perform constraint checking at the end of a
transaction (commit time).

45

Table Constraints

46

CREATE TABLE Officer(
 oid INTEGER,
 name CHAR(50),
 ship CHAR(5)
 PRIMARY KEY (oid)
 FOREIGN KEY (ship) REFERENCES Ships(sid)
 CHECK (‘Enterprise’ <> (SELECT Name
 FROM Ship S
 WHERE S.sid = Officer.ship))
);

CHECK clause can contain any conditional expression
If the conditional evaluates to false, the command is rejected

Multi-Table Constraints

47

CREATE TABLE SpaceStations (
 …

);

Keep the number of Planets and Space Stations Over 100

CHECK (100 > (SELECT COUNT(*) FROM Planets)
 +(SELECT COUNT(*) FROM SpaceStations))

Multi-Table Constraints

47

Keep the number of Planets and Space Stations Over 100

CHECK (100 > (SELECT COUNT(*) FROM Planets)
 +(SELECT COUNT(*) FROM SpaceStations))

CREATE ASSERTION SaveTheFederation

ASSERTION defines a CHECK that is not
associated with any specific table.

