
‘-

1

‘-

2

❏

❏

❏

‘-

3

❏

❏

❏

❏

❏

❏

‘-

4

❏

❏

❏

‘-

5

❏

❏

❏

❏

❏

❏

❏

‘-

6

At Every step, each of the
four processors compute
the next block of C in their
row in a cyclic fashion .To
produce C, as depicted in
the following slide.

❏

❏

‘-

7

‘-

8

❏

❏

❏

‘-

9

❏

❏

❏

‘-

10

❏

❏

‘-

11

‘-

12

‘-

13

‘-

14

CREATE TABLE y (i Integer, Y_i Double);

SELECT VECTORIZE (label_scalar (Y_i, i)) FROM y

‘-

15

‘-

16

● Implemented in java on top of SimSQL

● Incremental not Revolutionary

● A small set of changes

‘-

17

‘-

18

● Should Individual matrices stored in RDBMS be allowed to be large enough to exceed the size of

RAM available on one machine.

● Vectors/Matrices are stored as attributes in tuples.

● What if one has a matrix that is too large to fit in RAM of an individual machine?

● A large dense matrix with 100,000 rows and 100,000 cols and requiring nearly a terabyte of data

can be stored as 100 tuples in the table

‘-

19

● Basic operations are implemented directly in java on top of their in memory representation

● Basic operations include extracting the diagonal of a matrix, scalar/Matrix multiplication

● For complex operations like Matrix/Matrix Multiplication and Matrix Inverse the data is transformed

into C++ objects and BLAS implementations are used.

‘-

20

● Common way data is partitioned across machines is Hash partitioning

● Hash based partitioning is implicitly relies on the assumption that the number of data items is large

● The number of objects is ideally not large here. Therefore Hashing is ineffective.

● Why should number of objects be small in the first place?

‘-

21

● Consider multiplying two 10^5 * 10^5 matrices. Partitioning the matrices into 1000 * 1000 blocks

results in 10^4 different blocks.

● This join will output 10^4 * 10^2 output blocks or 10^6 * 8 MB = 8 TB of data has to be shuffled.

● If the block size is 10^4 * 10^4 then this would result in only 10^2 * 10 output blocks.

● This is less than 1TB of data to shuffle.

‘-

22

Optimization in SimSQL

‘-

23

●

○
○

●

1000 * 10000 * 8 bytes ~ 80 MB

●

TypeSignatures

‘-

24

❏

❏

https://ieeexplore.ieee.org/abstract/document/8340060
https://cse.buffalo.edu/faculty/miller/Courses/CSE633/Varsha-Ganesh-Spring-2019.pdf

‘-

25

